

Software	Binder		
2019	

Homestead	Robotics	(670)	

	
Introduction……………………..……………………..………………………………………………..…….6	

• Quick	Robot	Specs……………………..……………………..……………………………..……	7	
Coprocessors,	Sensors,	and	LEDs……………………..……………………..………………….….10	

• Coprocessors……………………..……………………..…………………………………….…….11	
o Raspberry	Pi……………………..……………………..………………………………….11	
o ODroid	XU4……………………..…………………….…………………………………….13	

• Sensors……………………..……………………..…………………………………….……………..14	
o IR	Sensor……………………..……………………..……………………………………….14	
o NavX	Gyroscope………...……………………..…………………………………………14	
o Ultrasonic	Sensors……………………..……………………..……..………………….16	

• LEDs..…………………..……………………..………………………………………….……………..16	
o Decorative	LEDs……………………..……………………..……………………….……16	
o LED	Rings……………………..…………………….………………………………………..20	

Subsystems……………………..……………………..…………………………………………………….…22	
• Arm……………………..……………………..………………………………………………………..24	

o Arm	State	Machine……………………..……………………..……………………...24	
o Arm	Tuning……………………..……………………..…………………………….…….26	

• Driver	Station……………………..……………………..………………………………………….31	
o Dashboard……………………..……………………..…………………………………...31	
o Driver	Cameras……………………..……………………..…………………………….33	
o Operator	Controller	–	Not	Used…………………………………………………..34	

• Intake……………………..……………………..…………………………………………………….35	
o Auto	Intake	Routine………………………………………………………..………….35	

• Cimber	–	Not	Used.……………………..……………………..…………………………….….36	
o Climbing	With	Tilt	Control	–	Not	Used……………..………………………….36	

• Motor	Controllers……………………..………………………………………………………….39	
o SparkMAX	Controller	Setup……………………..………………..……………….39	
o TalonSRX	Setup……………………..…………………………………………………..40	
o TalonSRX	Control	Modes……………………..……………………………………..43	
o Phoenix	Tuner……………………..………..……………………………………………46	

			Vision……………………..……………………..…………………………….……………………………….52	
• Pure	Pursuit……………………..……………………..…………………………………………….52	
• Vision	Camera	Setup……………………..……………………..……………………………….53	
• Vision	Calculations……………………..…………..…..…………………………………………54	

	

Table	of	Contents	
	

	 						 	4	

	
	

	 						 	 5	

Introduction	

	 						 	6	

	
	

Welcome	to	the	Homestead	Robotics	Software	Binder	for	
the	2019	FRC	Season	–	Destination:	Deep	Space.		
	

• Homestead	Robotics	(Team	670)	is	based	out	of	Homestead	High	
School	in	Cupertino,	California.	
	

• Our	team	programs	in	Java,	Python,	and	Arduino	C++.	
	
• Our	website	is	homesteadrobotics.com	and	any	questions	can	be	

sent	to	team670@homesteadrobotics.com.		
	 	

Introduction	
	

	 						 	7	

	

	
	 	

Quick	Robot	Specs	
	

	 						 	 8	

	
	 	

	 						 	 9	

Coprocessors,	Sensors,	and	LEDs	

	 						 	10	

	Our	2019	Robot	features	the	following	elements:	
	
Coprocessors	
• 1	Raspberry	Pi	
• 1	Odroid	XU4	–	Later	Removed	
	

	
Sensors:	
• 2	Microsoft	LifeCams	
• 2	Fisheye	Cameras	
• 3	Ultrasonic	Sensors	
• 1	IR	Sensor	
• 1	NavX	Gyroscope	

	
LEDs	
• 2	LED	Rings	
• Decorative	LED	Strips	
	
	 	

Coprocessors,	Sensors,	and	
LEDs	
	

	 						 	11	

	
The	Raspberry	Pi	is	being	used	to	run	driver	camera	streams	as	well	as	a	python	
script	that	puts	the	vision	error	code	to	network	tables	if	appropriate	cameras	
are	not	found.	

Start	scripts	on	boot	

The	streaming	script	(written	in	bash)	and	the	Python	script	are	set	to	run	when	
the	Pi	turns	on.	The	script	called	startup.sh	calls	both	scripts	and	is	set	to	run	
on	bootup	with	the	crontab	command.	To	set	up	a	script	to	run	on	boot:	

1. Open	up	a	terminal	window	and	type	crontab	-e	
2. Select	your	editor	of	choice	
3. Add	the	following	line	to	the	bottom	of	the	file:	@reboot	followed	by	the	
name	of	your	script	(for	us	this	line	looks	like	@reboot	/home/pi/startup.sh)	

Static	IP	Address	

A	static	IP	address	was	given	to	the	Pi	so	that	its	IP	address	is	the	same	
regardless	of	which	router	it	is	connected	to.	This	is	useful	especially	for	
testing	purposes	since	you	may	not	always	connect	the	Pi	to	the	same	router,	
in	which	case	you	would	have	to	scan	for	its	IP	address	each	time.	Also,	since	
we	are	using	mjpg-streamer	for	driver	camera	streams,	which	requires	us	to	
know	the	IP	address	of	the	device	the	cameras	are	plugged	into,	the	static	IP	
was	necessary	for	the	streams	to	function	seamlessly.	Use	the	instructions	
at	https://www.modmypi.com/blog/how-to-give-your-raspberry-pi-a-static-
ip-address-update	to	set	a	static	IP	address	for	your	Pi.	

Refer	to	the	page	on	Driver	Cameras	for	details	on	camera	streaming		
	

	

Raspberry	Pi	
	

Coprocessors	
	

	 						 	12	

Disable	WiFi	

1. Open	a	terminal	window	and	run	systemctl	disable	wpa_supplicant	
2. Open	/boot/config.txt	in	an	editor	of	your	choice	
3. Add	dtoverlay=pi3-disable-wifi	to	the	file	

Credit	to	https://irulan.net/disable-wifi-and-bluetooth-on-raspberry-pi-3/	

Use	this	process	to	clone	the	contents	of	one	SD	card	onto	another	

This	can	be	used	to	create	two	copies	of	an	SD	card	for	use	on	two	Pi’s	at	once	

NOTE:	this	process	requires	Win32	Disk	Imager	to	be	installed	

SD1	=	the	SD	card	being	copied	from	(the	original)	
SD2	=	the	SD	card	being	copied	to	(the	new	one)	

Do	this	with	SD1:		
Plug	into	laptop	using	an	adapter	if	necessary		
Read	the	contents	of	the	[D:]	drive	of	the	card	to	a	convenient	local	
destination	using	Win32	Disk	Imager	

	
Unplug	SD	card	from	laptop		
	
Then	do	this	with	SD2:		
Plug	into	laptop	using	an	adapter	if	necessary		
Windows	should	suggest	formatting	the	disk,	go	ahead	and	do	that		
Follow	the	instructions	on	this	page	to	remove	all	partitions	on	the	SD	
card:	http://oddsnsods.net/blog/?p=100		
Use	Win32	Disk	Imager	to	write	the	file	
read	from	SD1	in	the	previous	part	to	the	
[E:]	drive	of	the	SD	card		

Insert	SD2	into	the	Pi,	turn	it	on,	and	run	‘ls’	
in	the	root	directory	to	ensure	all	
contents	were	copied	over	

	 						 	13	

The	ODroid	XU4	coprocessor	is	a	powerful	coprocessor	for	vision	when	you	
want	a	continuous	feed	for	vision,	such	as	if	you	were	feeding	its	data	
directly	into	a	PID	loop.	However,	it	is	a	large	current	draw,	and	not	
necessary	if	using	the	option	we	went	for	with	vision	this	year:	taking	a	single	
picture	for	targeting	using	a	camera	connected	to	a	Raspberry	Pi,	then	using	
a	Pure	Pursuit	algorithm	to	drive	to	the	target.
	
The	way	we	chose	to	power	it	was	to	plug	it	directly	into	one	of	the	20	amp	
sections	of	the	PDP,	then	step	down	the	voltage	using	an	adjustable	power	
supply	off	of	Amazon.	

Beware	that	the	ODroid	seems	to	get	extremely	hot	when	running	for	an	
extended	period.	It	has	a	fan	for	cooling,	but	make	sure	the	case	has	holes	in	
it	and	that	it	is	not	placed	in	an	area	with	little	air	flow.	

For	a	good	metric	of	power	of	the	Odroid	compared	to	the	raspberry	pi,	check	
out	the	Liger	Bots	white	paper	which	we	used	as	
reference:	https://www.chiefdelphi.com/t/a-step-by-step-run-through-of-frc-
vision-processing/341012	

	

ODroid	XU4	Coprocessor	

	 						 	14	

Our	robot	has	a	single	IR	sensor	mounted	on	its	intake.	This	IR	sensor	has	a	
threshold	set	so	that	when	any	object	is	within	a	certain	distance	of	the	
sensor,	it	is	tripped.	In	this	competition,	it	is	used	to	register	when	a	Cargo	
game	piece	has	entered	the	intake.		
	
Setup	
The	sensor	is	plugged	directly	into	the	RoboRIO	DIO	ports.	Simply	instantiate	
the	IR	Sensor	as	a	DigitalInput	with	the	DIO	port	as	the	construction	
parameter.	Use	the	get()	method	to	get	the	sensor’s	output	as	a	boolean.	

	
	
	
	
	
	
	
	
	
	
	
	
	

Placement	
The	NavX	should	be	bolted	directly	to	the	drive	base	through	the	holes	in	its	
3D	printed	case,	and	should	be	as	close	to	the	center	of	the	robot	as	possible.	
We	have	not	been	using	any	of	its	magnetic	capabilities	so	far,	but	if	you	were	

Sensors	
	
IR	Sensor	

NavX	Gyroscope	

	 						 	15	

to	use	them,	it	should	not	be	located	near	any	running	motors	or	its	readings	
will	be	off.	

	
Reset	vs.	Zero	 	
The	reset()	method	should	be	called	on	the	NavX	at	the	beginning	of	the	
match	(inside	autonomousInit()).	This	zeros	the	NavX	device	itself,	making	it	
field	centric	for	the	match.	From	there	on,	the	NavX	should	not	be	reset	for	
the	rest	of	the	match.	Instead,	zero	it	from	within	code	so	that	both	a	zeroed	
and	field	centric	angle	can	be	pulled	off	of	it.	
	
Holding	a	Field	Centric	Angle	 	
Simply	hold	an	offset	value,	and	when	zero()	is	called,	subtract	that	offset	
value	from	the	NavX	reading	for	a	zeroable	yaw.	This	means	that	the	NavX	can	
be	zeroed	before	autonomous	driving	or	pivoting	Commands	to	make	the	
math	for	those	simpler.	The	field	centric	yaw	can	still	be	accessed	if	needed	
by	returning	the	direct	yaw	from	the	NavX	without	subtracting	the	offset	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 						 	16	

Our	robot	features	3	HC-SR04	ultrasonic	sensors	which	are	used	to	output	the	
range	to	the	nearest	object	it	detects.	In	our	case,	these	sensors	were	used	to	
find	distances	nearby	targets	for	use	in	our	“Vision	Drive”	routine.	
	
Setup	
The	ultrasonic	sensors	plug	in	directly	to	the	RoboRIO,	with	two	signal	pins	
being	used	for	the	Echo	and	Trigger,	respectively.	In	code,	the	Trigger	Pin	is	
instantiated	as	a	DigitalOutput	and	the	Echo	Pin	as	a	DigitalInput.	These	can	
then	be	passed	in	as	parameters	for	a	WPI	Ultrasonic	object.	With	one	or	more	
ultrasonic	sensors,	setAutomaticMode(true)	has	to	be	called	once	only	on	the	
last	object	instantiated.	Once	instantiated,	the	getRangeInches()	method	will	
return	the	output	of	the	ultrasonic	in	inches.	

	
	
	
	
	
	
	
	
	
	

	
What	You	Need	

• RoboRIO	
• Arduino	with	Ethernet.	This	can	be	an	Arduino	with	an	Ethernet	shield,	or	

something	like	the	Yun	which	has	it	built	in	

Ultrasonic	Sensors	

LEDs	
	
Decorative	LEDs	

	 						 	17	

• Neopixel	strip	(WS2812	Integrated	Light	Source)	
• Optional:	Ethernet	switch	for	extra	Ethernet	ports,	so	you	can	use	

Ethernet	on	RoboRio	both	for	all	your	necessities	and	the	fancy	lights	too	

	
Setting	Up	for	Your	Team/Code	Checklist	

• Neopixel	DATA	pin	connected	to	Arduino	pin	7	(to	use	a	different	pin	
for	data,	change	the	value	in	the	Arduino	code).	The	Neopixels	use	
RGB	format	at	800KHZ	bitstream.	

	

	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 	

	 						 	18	

• Pin	7	(or	whatever	you	defined	previously)	on	Arduino/Ethernet	shield	
to	white	wire	(DATAIN)	on	Neopixel	strip	

• 5v	pin	on	Arduino/Ethernet	shield	to	red	wire	(VIN)	on	Neopixel	strip	
• GND	pin	on	Arduino/Ethernet	shield	to	black	wire	(GND)	on	Neopixel	

strip	
• Arduino	Ethernet	shield	to	RoboRIO	Ethernet	(as	long	as	it's	somehow	

connected	to	Ethernet	on	the	robot	side)	
• Arduino	to	5V	500	mA	power	supply	on	the	VRM.	An	alternative	to	

powering	from	USB	

In the Arduino code, to set up IP addresses:

	
	
	
	

	
On	the	RIO-side,	make	sure	you	have	this	in	robotInit():	

	
	
	
	

	
To	run	on	RIO,	deploy	robotside	code	with	gradle	./gradlew	deploy	and	also	
upload	the	Arduino	sketch	to	the	Arduino.	
	

	
	
	
	
	
	

	 						 	19	

Animations	Used	on	2019	Robot	
	
Rainbow	Cycle	

	
	
Theatre	Chase	

	
	
Meteor	Rain	

	
	
Rainbow	Theatre	Chase	

	
	

	 	

	 						 	20	

Powering	Through	PCM	

The	LED	ring	we	used	from	SuperBrightLEDs	this	year	was	extremely	bright,	in	a	
180	degree	cone,	and	thus	extremely	annoying.	Some	judges	may	decide	that	it	
is	too	bright	to	be	on	constantly,	and	if	not,	at	the	very	least	it	is	annoying	to	
the	team	when	working	on	the	robot	while	it	remains	on.	

The	easiest	way	to	solve	this	dilemma	is	to	set	up	a	system	to	turn	the	LED	ring	
on	and	off.	There	are	two	ways	to	do	this:	use	a	relay	connected	to	the	
RoboRIO,	or	simply	treat	the	LED	like	a	Solenoid	from	the	PCM.	This	year	we	
chose	to	treat	it	as	a	Solenoid	for	simplicity	since	we	decided	to	implement	this	
after	the	build	season	ended.	

The	current	2019	PCM	outputs	two	possible	voltages	from	each	channel:	12	or	
24.	Our	LED	ring	uses	12V,	but	our	LED	ring	requires	12,	so	we	need	to	adjust	it.	
The	easiest	way	to	do	this	is	to	plug	a	voltage	adjuster	similar	to	
this:	https://www.amazon.com/LOCHI-1-25V-28V-Regulator-Adjustable-Step-
down/dp/B07L6CKXJN/ref=sr_1_1?keywords=voltage+adjuster+board&qid=15
51848924&s=gateway&sr=8-1	into	the	PCM,	and	then	plug	the	LED	ring	
straight	into	that.	

From	there	it	is	simple	to	instantiate	a	Solenoid	object	at	the	port	the	LED	ring	
is	plugged	into	and	simply	enable/disable	it	in	code	using	the	set()	method	
when	the	LED	ring	is	needed	for	targeting.	

The	one	disadvantage	to	this	is	that	the	
LED	ring	cannot	be	on	when	the	robot	
is	disabled	since	at	that	time	the	PCM	
will	not	output	power,	though	this	has	
no	effect	on	actual	competition	
matches,	only	testing.	

	

	
	

LED	Rings	

	 						 	21	

	

	 						 	 22	

Subsystems	

	 						 	23	

	
						Our	robot	features	the	following	subsystems:	
	

• Arm	
o Elbow	
o Extension	
o Wrist	
o Claw	

• Intake	
• Drivebase	
• Climber	–	Not	Used	(Code	written)	
	

	

	
	 	

Subsystems	

	 						 	24	

	
In	order	to	maintain	control	of	the	arm	on	this	robot,	it	is	kept	within	a	State	
Machine	at	all	times	to	keep	track	of	it	while	changing	position.	When	a	
button	is	pressed	to	move	the	arm,	the	code	looks	at	the	current	ArmState,	
performs	a	search	for	a	path	to	the	desired	ArmState,	and	then	executes	it.	
This	prevents	it	from	colliding	with	the	intake	and	allows	it	to	maintain	
position	and	be	moved	around	with	simple	button	clicks	rather	than	unwieldy	
joysticks.	
	
Arm	State	Machine	

• Arm	
• LegalState	
• ArmState	-	implements	

Node	
• ArmTransition	-	

implements	Edge	

Arm	
Represents	the	actual	Arm	as	a	
Subsystem.	Instantiates	a	static	
HashMap	containing	all	of	the	
ArmStates	and	stores	the	current	
ArmState,	its	HeldItem,	and	the	
arm's	coordinate	position.	
	

LegalState	
A	boolean	representing	each	
potential	position	for	the	arm	
that	is	used	to	look	up	each	ArmState	that	each	LegalState	corresponds	to.	
	

	

Arm	State	Machine	

Arm	

	 						 	25	

	
ArmState	
The	aggregate	of	the	angle	of	the	elbow	and	wrist,	the	extension	length,	and	
the	intake	position.	Examples	are	positions	for	the	Low	Hatch,	Ball	Intake,	
Cargoship	Ball,	etc.	About	35	total	were	calculated	and	put	in	code	to	be	used	
to	track	the	arm	and	keep	it	in	the	correct	position.	One,	and	only	one,	
subclass	of	this	is	instantiated	for	each	possible	position	of	the	arm,	each	of	
which	work	as	a	Node	for	the	breadth-first	search	and	are	passed	around	to	
be	used	in	the	search.	Also	stores	an	array	of	ArmTransitions	that	can	be	used	
to	get	from	this	ArmState	to	other	ArmStates.	If	a	PlaceOrGrab	state,	contains	
extra	data	that	pertains	to	how	far	it	extends	from	the	robot	for	use	with	
vision	alignment.	
	
ArmTransition	
One,	and	only	one,	subclass	of	this	is	instantiated	for	each	allowed	transition	
between	states	of	the	arm.	Many	of	these	are	CommonTransition,	which	
simply	moves	each	piece	of	the	arm	directly,	while	others	can	be	defined	
specifically	to	prevent	the	arm	from	colliding	with	other	parts	of	the	robot.	
Contains	a	starting	ArmState	and	an	ending	ArmState	for	use	in	the	search.	It	
also	has	to	keep	track	of	the	intake's	position	to	prevent	it	from	colliding	with	
the	arm	and	completely	destroying	it	while	keeping	it	out	the	way	of	driving	
and	placing.	This	ArmTransition	is	then	executed	using	a	well-tuned	Motion	
Magic	trapezoidal	motion	profile	that	prevents	jerky	movement.	This	had	to	
be	tuned	for	each	of	the	4	components	separately,	and	when	combined	
creates	a	smooth	movement.	Additionally,	movement	accounts	for	the	extra	
weight	of	either	game	piece	which	may	be	held.	A	final	parameter	is	the	30	
inch	size	constraint	outside	the	frame	perimeter,	which	specific	arm	
transitions	keep	the	arm	within	if	it	is	physically	possible	for	it	to	leave	the	
space.	
	
Breadth	First	Search	
A	simple	implementation	of	a	breadth	first	search	that	finds	the	most	
optimized	path	from	one	ArmState	to	another	by	looking	along	the	
ArmTransitions	extending	out	from	the	current	ArmState	and	then	continuing	
from	there.	It	is	generalized	using	the	Node	and	Edge	classes	so	that	it	could	

	 						 	26	

be	used	for	other	purposes.	Node	is	a	point	on	a	2D	graph,	and	Edge	is	a	line	
between	two	Nodes	on	the	graph.	
	

	
Below	is	a	verrrry	messy	copy-paste	of	the	actual	test	plan	used	for	the	2019	
season.	

	Phoenix	Tuner	is	a	pretty	useful	tool!	Find	out	how	to	use	it	here	

0.	Run	through	all	gear	ratios,	encoder	counts,	and	conversion	equations	
with	Ben	and	triple	check	them	for	the	Wrist,	Elbow,	and	Extension.	
Otherwise,	you	might	have	all	kinds	of	uncontrollable	bugs	that	will	break	
the	robot.	If	Ben	is	busy,	hunt	him	down	and	hold	him	down	because	this	
is	the	most	important	thing.	

0.5.	Update	all	TalonSRX	and	VictorSPX	Firmware,	set	CAN	IDs	properly,	
and	update	the	CAN	IDs	to	match	in	RobotMap	

0.55	MAKE	SURE	THE	CONSTRUCTOR	IS	GIVING	ALL	THE	RIGHT	VALUES	

0.6	SET	P	TO	0	AND	RUN	WHILE	HOLDING	UP	TO	CHECK	THAT	
FEEDFORWARD	IS	IN	THE	CORRECT	DIRECTION	

1.	Tune	Wrist	with	no	Weight	

• Make	sure	the	constructor	is	passing	in	all	the	correct	values	to	the	
super	constructor.	to	do	that:	

• Find	the	absolute	encoder	value	when	wrist	is	flat	-	that’s	
OFFSET_FROM_ENCODER_ZERO	

• Find	the	limits	that	we	want	to	have	in	each	direction	from	0	-	that’s	
FORWARD_SOFT_LIMIT	and	REVERSE_SOFT_LIMIT.	

• Let’s	write	down	the	true	limits	in	the	code	in	a	comment	and	initially	
we’ll	restrict	ourselves	to	some	subset.	

• Check	RobotMap	for	CAN	Bus	numbers	

Arm	Tuning	

	 						 	27	

• Determine	the	SensorPhase	and	MotorInversion	
• Place	the	arm	at	a	horizontal	angle	and	prop	it	up	with	a	block	
• Limit	the	wrist’s	movement	from	going	very	far	past	vertical	

	

	

• Place	pool	noodles	on	the	top	of	the	arm	and	on	the	block	to	protect	in	
case	it	blows	past	limits	

• Make	sure	the	Wrist	is	in	Brake	Mode	
• Use	Arbitrary	Feed	Forward	Calculator	Command	to	figure	out	arbitrary	

forward	to	hold	the	wrist	at	horizontal	
• SET	P	TO	0	AND	RUN	WHILE	HOLDING	UP	TO	CHECK	THAT	

FEEDFORWARD	IS	IN	THE	CORRECT	DIRECTION	
• Tune	PID	Values	until	smooth	motion	is	achieved	that	reaches	and	

holds	at	the	target	
• Increase	soft	limits	to	allow	wider	range	of	motion.	Test/adjust	tuning	
• Increase	soft	limits	to	full	range	of	motion.	Test/adjust	tuning	
• Estimate	for	max	shaft	rotation	speed:	18730rpm	*	(1	minute/60	

second)	*	(1/26	gearing)	=	12	full	(360	degree)	rotations	per	second.	

	 						 	28	

The	wrist	probably	has	a	usable	range	of	motion	of	somewhere	
between	180-270	degrees.	We’ll	need	far	less	than	max	speed.	

• Approximation	for	max	velocity:	1/8	of	max	speed	=	600	units	per	
100ms	

• Approximation	for	max	acceleration:	6000	units	per	second?	

2.	Tune	Elbow	with	no	Weight	and	no	Extension	

• Make	sure	the	constructor	is	passing	in	all	the	correct	values	to	the	
super	constructor	

• Check	RobotMap	for	CAN	Bus	numbers	
• Determine	the	SensorPhase	and	MotorInversion	
• Limit	the	arm’s	movement	to	a	small	cone	near	vertical	using	soft	limits	
• Place	a	stack	of	Pool	noodles	on	top	of	a	block	on	each	side	of	the	arm	

in	case	it	blows	past	the	soft	limits	
• Make	sure	the	Elbow	is	in	Brake	Mode	
• Get	Arbitrary	Feed	Forward	using	the	Arbitrary	Feed	Forward	finding	

Commands	
• SET	P	TO	0	AND	RUN	WHILE	HOLDING	UP	TO	CHECK	THAT	

FEEDFORWARD	IS	IN	THE	CORRECT	DIRECTION	
• Tune	PIDF	Values	until	smooth	motion	is	achieved	
• Increase	soft	limits	to	allow	wider	range	of	motion.	Test/adjust	tuning	
• Increase	soft	limits	to	full	range	of	motion.	Test/adjust	tuning	
• Estimate	for	max	shaft	rotation	speed	TO	BE	VERIFIED	WITH	BEN:	

18730rpm	*	(1	minute/60	second)	*	(1/390	gearing)	=	0.8	full	(360	
degree)	rotations	per	second	

• Approximation	for	max	velocity:	absolute	max	is	327.68	units	per	100	
ms.	We	can	start	with	150	units	per	100ms.	

• Approximation	for	acceleration	per	second:	3000	units	per	second?	

After	tuning,	you	should	get	a	fancy	output	on	Phoenix	Tuner	that	looks	
something	like	this:		

	 						 	29	

	

3.	Tune	Extension	

• Make	sure	the	constructor	is	passing	in	all	the	correct	values	to	the	
super	constructor	

• Check	RobotMap	for	CAN	Bus	numbers	
• Determine	the	SensorPhase	and	MotorInversion	

• Make	sure	the	Extension	is	in	Brake	Mode	
• Get	Arbitrary	Feed	Forward	using	the	Arbitrary	Feed	Forward	finding	

Commands	
• SET	P	TO	0	AND	RUN	WHILE	HOLDING	UP	TO	CHECK	THAT	

FEEDFORWARD	IS	IN	THE	CORRECT	DIRECTION	
• Point	the	arm	vertical	and	prop	it	up	in	that	position	
• Add	in	Soft	Limits	just	inside	the	physical	limits	of	the	Extension	
• Figure	out:	what	max	velocity	and	max	acceleration	do	we	want	to	

target?	
• Figure	out	the	Arbitrary	Feed	Forward	needed	to	hold	up	the	

Extension	

	 						 	30	

• Use	this	Arbitrary	FeedForward	in	updateArbitraryFeedForward(),	
note	that	this	piece	works	somewhat	opposite	of	the	rotating	pieces	in	
that	it	needs	more	feed	forward	as	it	moves	towards	vertical,	so	use	
sine	instead	of	cosine	(based	on	angle	of	elbow)	

• Tune	PIDF	Values	until	smooth	motion	is	achieved	
• Test	both	Reset	Extension	Commands	
• Estimate	for	max	shaft	rotation	speed	TO	BE	VERIFIED	WITH	BEN:	

18730rpm	*	(1	minute/60	second)	*	(1/35	gearing)	=	8.9	full	(360	
degree)	output	shaft	rotations	per	second.	Question	is	how	many	
rotations	to	move	the	extension	from	one	limit	to	the	other.	Per	Ben:	
5.906	inches	per	rotation	of	the	output	shaft	So	that’s	a	max	speed	of	
52.68”	per	second,	which	is	obviously	way	too	much	for	an	extension	
that	is	currently	right	about	12”	long	Let’s	aim	to	get	to	about	1	
second	end-to-end.	And	let’s	start	at	half	of	that.	With	the	current	
limit	switches	(which	still	aren’t	wired	so	let’s	remember	that),	we	
have	about	8000	ticks	so	call	it	800	units	per	100ms.	So	we’ll	start	with	
400	units	per	10ms.	Accel:	6000	units	per	second	

4.	Tune	Elbow	at	Full	Extension	by	Adjusting	only	Arbitrary	Feed	Forward	

• Get	new	Arbitrary	Feed	Forward	using	the	Arbitrary	Feed	Forward	
finding	Commands	

• Use	this	Arbitrary	Feed	Forward	and	the	one	at	no	extension	to	create	
a	linearized	equation	for	Arbitrary	Feed	Forward	based	on	the	
extension	length	(use	this	calculation	in	
updateArbitraryFeedForward()	or	alternatively	just	use	it	to	scale	the	
result	of	getArbitraryFeedForwardAngleMultiplier())	

• Check	that	smooth	motion	is	now	achieved	at	full,	half,	and	no	
extension	

5.	Run	all	of	the	MoveArm	Commands	using	XKeys	

• Set	up	Foam	Bumpers	on	pieces	of	wood	(many,	many	pool	noodles)	
so	if	the	arm	blows	past	limits	it	will	not	smash	itself	to	pieces	

	 						 	31	

• Keep	in	mind	that	some	of	the	Commands	will	not	be	bound	by	
default	to	XKeys	(the	actual	place	commands	and	the	ReadyToClimb	
state,	and	start	states),	so	bind	these	to	Xbox	Controller	buttons	or	
something	to	run	them.	Full	List	of	all	ArmStates	is	in	ArmStates.txt	in	
the	Subsystem	package	NOTE:	The	current	method	of	using	
CommonTransition	to	move	between	all	of	the	states	by	going	
through	Netural	probably	works	for	now,	but	keep	track	of	where	it	
might	hit	the	intake	or	the	climber	tubes	and	make	note	to	edit	those	
specific	transitions	

• Turn	the	peak	motor	output	all	the	way	up	and	run	the	move	
Commands	again	

6.	Run	everything	with	a	hatch	held.	If	it	creates	an	issue	or	you	
miraculously	have	extra	time(????),	repeat	Wrist	tuning	with	a	
hatch	held	in	the	wrist.	Then	repeat	Extension	and	Elbow	the	same	
way	and	have	a	check	that	changes	the	values	when	grabbing	a	
hatch.	If	we	need	to	do	anything	for	the	hatch	or	cargo,	it’s	most	
likely/hopefully	just	computing	a	different	arbitrary	feedforward	
value	for	each	component	while	the	robot	is	holding	a	hatch	or	
cargo.	If	that	works	correctly,	the	PID	tuning	should	remain	the	
same.	

7.	If	Holding	cargo	also	causes	issues,	repeat	the	same	thing	just	with	a	
cargo	ball.	

	

The	Dashboard	is	a	custom	dashboard	which	is	being	used	in	place	of	
SmartDashboard/ShuffleBoard.	
	

Driver	Station	
Dashboard	

	 						 	32	

We	have	a	large	space	for	viewing	driver	cameras	which	are	streamed	via	
mjpg-streamer	from	the	Raspberry	Pi.	(see	the	page	on	Driver	Cameras	for	
more	details)	

In	the	top	right	is	a	real-time	diagram	of	the	robot.	This	is	accomplished	by	
continuously	sending	over	network	tables	the	elbow	angle,	the	extension	
length	of	the	arm,	and	the	angle	of	the	intake,	all	measured	by	encoders,	
reading	those	values	in	the	dashboard,	and	updating	the	diagram	
accordingly.	

	
The	status	of	the	claw	is	indicated	by	filling	the	claw	in	the	diagram	with	
different	colors	to	represent	the	different	states.	These	values	are	also	sent	
over	network	tables	and	read	by	the	dashboard.	

	
The	current	ArmState	is	also	displayed	as	text	as	is	the	current	HeldItem,	
which	represents	what	the	claw	thinks	it	is	currently	holding.	

	

	

	

	

	

	
	

	
	

	

	

	 						 	33	

	

We	are	using	2	fisheye	cameras	placed	on	either	side	of	the	robot	for	driver	
vision.	These	cameras	are	plugged	into	the	Raspberry	Pi,	and	streaming	
starts	when	the	Pi	turns	on	(see	the	Raspberry	Pi	page	for	details).	The	
cameras	are	streamed	to	the	dashboard	(see	the	page	on	Dashboard)	
using	mjpg-streamer.	

To	set	up	mjpg-streamer:	

1. Follow	the	instructions	on	https://github.com/jacksonliam/mjpg-
streamer	

Before	using	this	setup	in	competition:		

Set	up	a	static	IP	address	for	the	Pi	
Refer	to	the	Raspberry	Pi	page	for	details	

Make	sure	the	number	in	/dev/video	for	your	camera	is	consistent	

1. Plug	in	the	desired	camera	to	the	desired	USB	port	on	the	Pi	
2. Run	 	in	a	terminal	window	-	you	should	see	an	item	

listed	video#	where	#	is	a	single	digit	number,	usually	0	
3. Run	 	-	you	should	see	a	long	string	that	is	

symlinked	to	the	video#	you	saw	above	
4. Set	a	symlink	from	the	new	location	you	want	the	camera	to	be	to	the	

string	you	see	in	by-path	(we	wanted	our	front	driver	camera	to	
be	 	and	

saw	 	under	
by-path	so	we	ran	the	following	command	to	set	a	symlink	between	the	

two

Check	that	the	symlink	worked	by	running	 	again	-	you	
should	see	the	new	link	you	just	created	

Driver	Cameras	

	 						 	34	

**Note	that	this	link	is	deleted	when	the	Pi	reboots.	To	use	this	link	multiple	

times,	run	the	 	command	either	in	any	script	that	starts	on	bootup	or	
in	the	 	file**	

**Also	note	that	the	link	 	points	to	the	specific	USB	port,	
and	not	the	camera	itself.	So,	make	sure	you	plug	the	same	cameras	into	the	
same	ports	each	time.	While	this	may	seem	like	it	defeats	the	purpose	of	this	
process,	it	is	important	to	the	streamer	code.**	

	

	

	

	

	

	

	

	

Intro	

Although	the	operator	joystick	was	never	used,	code	for	it	was	still	written.	
This	code	was	held	within	JoystickElbow.java,	JoystickExtension.java,	
JoystickWrist.java,	and	JoystickClimb.java.	

ControlOperatorController.java	

A	command	called	ControlOperatorController	was	initialized	in	robotInit()	
within	Robot.java.	The	ControlOperatorController	command	was	

Operator	Controller	–	Not	Used	

	 						 	35	

uninterruptible	and	never	finished.	The	command	held	an	enum	for	three	
separates	states	that	the	operator	controller	could	be	in:	ARM,	CLIMB,	and	
NONE.	

Transitioning	between	these	states	was	purposely	made	to	be	slightly	
difficult	in	order	to	make	sure	that	the	operator	did	not	switch	between	
these	states	accidentally.	

Once	the	operator	did	switch	into	a	state,	the	joysticks	were	mapped	to	
different	subsystems.	In	the	ARM	state,	the	right	stick	controlled	the	elbow,	
the	left	controlled	the	wrist,	and	the	triggers	controlled	the	extension.	In	the	
CLIMBER	state,	the	right	stick	controlled	the	back	pistons	and	the	left	stick	
controlled	the	front	pistons.	

Joystick	Commands	

Each	joystick	command	had	similar	logic.	The	command	was	instant	and	
took	in	a	squared	input	from	the	ControlOperatorController	class.	This	input	
was	then	used	to	scale	the	maximum/minimum	output	of	its	respective	
subsystem	in	order	to	control	the	subsystem's	movement.	

A	tolerance	is	set	at	a	specified	distance	away	from	the	soft	limits	set.	Once	
the	encoder	hits	this	tolerance,	a	linear	scalar	is	multiplied	by	the	output,	
slowing	the	movement	until	it	hits	the	soft	limit.	

	
	

Intro	 	
The	AutoIntake	sequence	is	used	to	take	in	a	ball	from	the	front	of	the	
robot.	It	utilized	both	the	intake	and	the	arm,	as	well	as	an	IR	sensor	
mounted	on	the	intake	itself.	

Intake	
Auto	Intake	Routine	 	

	 						 	36	

Routine	

The	sequence	for	AutoIntake	is	controlled	using	a	CommandGroup:	
AutoPickupCargo.java.	The	steps	it	uses	are	as	follows:	

• If	the	claw	is	closed,	it	is	opened	in	parallel.	
• The	arm	is	then	moved	to	a	state	in	which	it	is	ready	to	receive	a	ball	

from	the	intake	in	sequential.	This	state	also	calls	for	the	intake	to	be	
deployed.	

• The	command	RunIntakeWithIR	is	called	in	sequential.	
o This	command	runs	the	intake	rollers	in	until	an	IR	sensor	

mounted	on	the	
intake	is	tripped.	
Following	this,	the	
intake	continues	to	
run	for	0.55	seconds,	
effectively	keeping	
the	ball	at	the	top	of	
the	intake	for	the	
claw	to	finish	picking	
up	the	ball.	

• A	TimedRunIntake	command	is	
called,	which	runs	the	rollers	in	for	
0.6	seconds,	the	pre-determined	time	for	the	claw	to	open	or	close.	
This	is	called	in	parallel	at	a	reduced	speed.	

• The	PickupBall	command	is	called	in	sequential,	which	closes	the	claw	
and	sets	the	HeldItem	enum	to	BALL.	

• The	Intake	rollers	are	stopped	
• The	arm	is	moved	back	into	Neutral,	which	also	brings	the	intake	back	

in.	

	 						 	37	

	
Intro	
The	climber	for	the	2019	Destination:	Deep	Space	robot	was	ultimately	not	
finished	in	time	for	competition	season.	However,	code	for	the	subsystem	
was	still	written	in	advance.	The	climber	subsystem,	as	seen	below,	featured	
two	sets	of	pistons	(front	and	back),	controlled	by	motors	connected	to	
Talon	SRX's.	
	
Climbing	Routine	
The	climber	was	designed	to	reach	both	HAB	Level	2	and	HAB	Level	3.	The	
routine	for	climbing	is	as	follows:	

• The	driver	drives	the	robot	up	to	the	platform	and	aligns	it	properly	by	
"ramming"	into	the	platform	itself	

• The	pistons	the	motors	drive	both	pistons	down	until	the	robot	reaches	
the	appropriate	height	(Level	2	or	Level	3)	

• The	arm	on	the	robot	comes	down	onto	the	platform	and	pulls	in,	bring	
the	front	wheels	of	the	robot	onto	the	platform	(this	step	is	repeated	as	
many	times	as	necessary	until	the	front	wheels	are	safely	on)	

• The	front	pistons	are	retracted	and	the	driver	drives	the	wheels	until	the	
back	pistons	hit	the	platform	

• The	back	pistons	are	retracted	and	the	driver	finishes	driving	the	robot	
onto	the	platform	

User	Control	of	the	Climb	
Control	of	the	climb	is	done	through	CycleClimb.java.	The	stages	of	the	
climbing	process	were	controlled	through	an	enum:	ClimbStage.	The	
operator	was	given	a	button	to	cycle	through	these	stages.	Each	time	the	

Climber	–	Not	Used	
Climbing	with	Tilt	Control	–	Not	Used	

	 						 	38	

button	was	pressed	called	the	respective	command	and	switched	the	enum	
to	the	next	state.	These	states	included:	

• DEPLOY_PISTONS:	Moved	both	pistons	down	to	bring	the	robot	up	to	the	
correct	height.	

• ARM_CLIMB:	Executed	the	arm	movement	to	drag	the	robot	onto	the	
platform.	(This	movement	would	be	called	repeatedly	until	the	operator	
called	the	"CANCEL_ARM_CLIMB"	command	

• RETRACT_FRONT_PISTONS_AND_STOW_ARM:	Retracted	the	front	
pistons	and	moved	the	arm	into	the	"STOW"	position	

• RETRACT_BACK_PISTONS:	Retracts	the	back	pistons	

Climbing	with	Tilt	Control	
Climbing	with	tilt	control	was	called	with	the	
command:	PistonClimbWithTiltControl.java.	This	
command	set	setpoints	on	the	two	WPI	
PIDControllers	instantiated	with	the	front	and	back	
TalonSRX's.	A	third	PIDController	was	used	to	
minimize	"tilt	error"	based	on	input	from	the	NavX	
sensor	mounted	on	the	drivebase.	This	
PIDController	returned	outputs	that	were	used	to	
adjust	the	maximum	and	minimum	outputs	of	the	
PIDControllers	on	the	front	and	back	pistons.	For	
example,	if	the	NavX	returned	a	pitch	of	-2	degrees	
(meaning	that	the	front	of	the	robot	dipped	
downward),	the	tilt	PIDController	would	return	a	
value	to	increase	the	maximum	range	of	the	front	
PIDController,	increasing	it's	maximum	output	to	
compensate	for	the	forward	tilt.		
	

	

	 						 	39	

	
Before	using	the	SparkMAX,	make	sure	to	flash	the	correct	firmware	and	set	
the	ID	properly	on	the	controller.	This	can	be	done	using	the	client	
application.	Of	course,	before	doing	that	make	sure	to	plug	the	Spark	
properly	into	the	PDP	and	put	it	in	the	CAN	loop	properly.	Once	this	is	done,	
the	Spark	be	solid	cyan.	Refer	to	the	blink	code	chart	below.	
	
Instantiation	and	Setup	
	
Instantiate	each	controller	as	a	CANSparkMax	object	with	the	Spark	ID	and	
either	CANSparkMaxLowLevel.MotorType.kBrushless	or	
CANSparkMaxLowLevel.MotorType.kBrushed	as	parameters	depending	on	
the	motor	being	connected.	It	is	extremely	important	to	set	brushed	or	
brushless	properly	as	doing	this	improperly	may	damage	either	the	
controller,	the	motor,	or	both.	Once	this	is	done,	follow	the	steps	below:	

• SetInverted:	The	method	setInverted()	inverts	the	output	of	the	
controller.	
	

• PID	Control:	Each	controller	has	built-in	PID	controllers.	Position	and	
velocity	control	can	both	be	used	by	utilizing	multiple	slots.	Output	
ranges	should	be	set	with	the	method	setOutputRange()	on	the	PID	
Controller.	
	

• Ramp	Rate:	Ramp	rate	can	be	set	with	the	method	setRampRate().	
Use	this	to	prevent	stripping	out	gearboxes.	If	it	is	0,	the	robot	will	
stop	almost	on	a	dime	if	it	is	light	and	in	brake	mode,	but	gear	boxes	
will	suffer.	We	recommend	at	least	0.25	and	more	if	the	robot	is	
heavy.	
	

• Built-In	Encoder:	Each	SparkMAX	Controller	has	a	built	in	encoder	
which	can	be	called	with	the	method	getEncoder().	Calling	

Motor	Controllers	
SparkMAX	Drivebase	Controller	Setup	

	 						 	40	

getPosition()	on	this	encoder	will	return	position	in	revolutions	and	
getVelocity()	returns	RPM	but	this	can	be	scaled	using	
setVelocityConversionFactor().	
	

• Speed	Controller	Group/Differential	Drive:	The	controllers	on	either	
side	can	be	put	into	a	WPI	SpeedControllerGroup,	which	together	can	
be	used	to	make	a	WPI	DifferentialDrive	object.	Any	drive	commands	
can	then	be	called	on	the	
DifferentialDrive	object	such	as	
TankDrive	or	CurvatureDrive.	A	
max	output	can	be	set	on	the	
Differential	Drive	object	with	the	
method	setMaxOutput().	

	

	

	

	

	

	

Before	using	the	TalonSRX,	make	sure	to	flash	the	correct	firmware	and	set	
the	ID	properly	on	the	Talon.	This	can	be	done	using	the	Phoenix	Tuner.	Of	
course,	before	doing	that	make	sure	to	plug	the	Talon	properly	into	the	PDP	
and	put	it	in	the	CAN	loop	properly.	Once	this	is	done,	the	Talon	should	flash	
orange.	Refer	to	the	blink	code	chart	below.	Note:	if	two	Talons	are	set	to	
the	same	ID,	they	may	show	up	as	only	Talon.	As	such,	when	making	a	new	
electronics	board,	it	might	make	more	sense	to	add	each	Talon	on	
individually.	
	

TalonSRX	Setup	

	 						 	41	

Instantiation	and	Setup	
	
Instantiate	a	new	TalonSRX	object	and	pass	in	its	ID	as	a	parameter.	
Following	this,	the	rest	of	the	recommended	setup	steps	are	listed	below:	
	

• Factory	Default:	The	Talon	can	have	all	of	its	configurations	set	to	the	
default	factory	values	using	the	method	configFactoryDefault().	This	
effectively	takes	out	the	need	to	set	every	parameter	on	the	Talon.	
	

• SelectedFeedbackSensor:	The	connected	feedback	sensor	can	be	set	
with	the	method	(configSelectedFeedbackSensor).	Passing	in	either	
FeedbackDevice.CTRE_MagEncoder_Relative	or	
FeedbackDevice.CTRE_MagEncoder_Absolute	corresponds	to	a	
relative	or	absolute	CTRE	Mag	Encoder	respectively.	This	can	then	be	
used	later	for	Motion	Magic	or	other	control	loops.	
	
	

• Current	Limits:	Both	a	continuous	and	a	peak	current	limit	can	be	set	
on	the	TalonSRX.	The	continuous	limit	serves	as	a	lower	limit	for	the	
current	and	can	be	set	with	the	method	
configContinuousCurrentLimit().	The	current	is	allowed	to	exceed	this	
limit	set	for	the	amount	set	with	the	method	
configPeakCurrentDuration().	The	current	will	never	be	allowed	to	
exceed	the	peak	current	set	with	configPeakCurrentLimit().	If	the	peak	
current	limit	is	set	to	0,	the	continuous	current	limit	will	act	as	the	
maximum	current	allowed.	
	

• Soft	Limits:	Forward	and	reverse	soft	limits	can	be	set	with	
configForwardSoftLimitThreshold()	and	
configReverseSoftLimitThreshold(),	respectively	with	the	forward	limit	
being	the	more	positive	tick	value.	These	soft	limits	should	then	be	
enabled	with	the	methods	configForwardSoftLimitEnable(true)	and	
configReverseSoftLimitEnable(true).	
	
	

	 						 	42	

• Follower:	If	this	Talon	is	being	set	as	a	follower,	this	can	be	done	with	
the	method	follow()	with	the	master	Talon	passed	in	as	a	parameter.	
More	information	about	followers	can	be	found	on	in	the	"Control	
Mode"	section.	
	

• Closed	Loop	Control:	For	closed	loop	control	(in	our	case,	Motion	
Magic),	first	a	profile	slot	has	to	be	set	with	the	method,	
selectProfileSlot()	with	the	slot	number	passed	in.	Following	that,	the	
PID,	Feed	Forward,	and	I-Zone	constants	can	be	set	for	that	slot.	For	
Motion	Magic,	cruise	velocity	and	acceleration	should	be	set.	Peak	and	
nominal	outputs	can	then	be	set,	with	peak	output	representing	the	
strongest	output	allowed	and	nominal	representing	the	weakest.	
Finally,	the	allowable	error	for	the	control	loop	can	be	set	with	
configAllowableClosedloopError().	
	
	

• Set	Sensor	Phase:	The	feedback	sensor	set	above	should	increase	
when	the	Talon	gives	a	positive	output.	If	the	two	don't	correlate	then	
the	setSensorPhase	method	should	be	called	with	either	false	or	true	
such	that	both	the	Talon	and	the	sensor	are	in	sync.	
	

• Selected	Sensor	Position:	The	method	getSelectedSensorPosition()	
should	be	used	to	get	the	
output	of	the	encoder	
connected	to	each	respective	
Talon.	Use	this	instead	of	
getQuadraturePosition().	

	
	
	
	
	
	
	
	

	 						 	43	

	
Note:	all	control	modes	run	at	a	rate	of	1000	times	per	second	by	default,	so		
using	Onboard	Talon	control	modes	will	always	be	more	accurate	than	doing	
stuff	from	the	RoboRIO	if	tuned	well.	
	
	
Percent	Output	

• Uses	PWM	control,	the	most	basic	way	to	control	a	motor	
• Good	for	linear	movement,	likely	the	best	option	for	using	Joystick	input	

to	control	a	mechanism	

Position	

• Uses	encoders	(or	any	other	type	of	sensor	you	can	plug	into	the	
TalonSRX)	and	tries	to	servo	the	mechanism	to	the	position	using	a	PIDF	
loop	(make	sure	to	tune	these	and	set	them	on	the	motor)	

• Often	not	very	well	controlled	unless	the	loop	is	tuned	well	
• An	issue	we	have	often	had	with	this	method	involved	being	unable	to	

set	the	sensor	phase	of	the	encoder	(reverse	it).	Make	sure	you	use	
talon.getSelectedSensorPosition()	when	getting	encoder	position	and	not	
talon.getSelectedSensor.getQuadraturePosition()	and	you	will	avoid	this	
and	many	other	issues!!!!	

Arbitrary	Feedforward	(also	useful	for	basically	all	other	control	modes)	

• Arbitrary	Feedforward	is	a	value	that	is	always	output	to	the	motor	no	
matter	what	(use	this	to	counteract	a	constant	force	like	gravity)	

• The	easiest	way	to	do	this	if	the	mechanism	is	moving	is	to	have	a	WPI	
Notifier	object	(essentially	a	separate	Thread)	that	runs	constantly	and	
updates	the	Arbitrary	Feedforward	on	the	motor.	If	you	were	
counteracting	gravity,	you	would	calculate	and	store	how	much	you	
Motor	output	[0,	1]	you	need	to	hold	the	mechanism	perpendicular	to	

TalonSRX	Control	Modes	

	 						 	44	

the	ground	(most	strength	you	need),	and	then	multiply	it	by	the	
appropriate	trig	function	(sine/cosine)	of	the	angle	to	the	ground	based	
on	where	zero	is	so	it	scales	the	feedforward	appropriately.	

Motion	Magic	

• This	is	our	control	mode	of	choice	for	moving	the	arm	and	intake	on	the	
2019	robot,	and	should	be	used	for	any	task	that	requires	precisely	
moving	a	component.	Essentially,	the	TalonSRX	uses	a	PIDF	loop	to	move	
a	component,	extremely	similarly	to	Position	control.	The	main	difference	
is	that	this	mode	either	uses	a	Trapezoidal	Profile	or	an	S-Profile	
(depending	on	how	you	set	it	up).	This	means	that	the	output	of	the	
motor	ramps	up	smoothly,	maintains,	and	then	ramps	down	as	it	nears	
its	target.	This	is	nice	for	not	slamming	fragile	components	around	and	
creating	smoother	movement	with	less	likelihood	of	chains	or	belts	
slipping.	Almost	all	of	it	is	handled	by	the	controller,	you	just	pass	in	
values	and	tune	it	(see	our	Arm	Tuning	page	on	this	wiki).	

	

	

	

	

	

	

	

	

• An	issue	we	have	often	had	with	this	method	involved	being	unable	to	
set	the	sensor	phase	of	the	encoder	(reverse	it).	Make	sure	you	use	
talon.getSelectedSensorPosition()	when	getting	encoder	position.	

	 						 	45	

Motion	Profile	

• I	never	got	this	working	well	and	ended	up	using	Pathfinder	instead,	
however	it	is	there.	The	concept	is	that	you	stream	a	bunch	of	different	
waypoints	to	the	Talon	and	it	tries	to	essentially	follow	them.	You	can	
either	load	all	points	and	then	start	driving	them,	or	load	as	you	drive	
once	you've	given	it	a	certain	number	so	it	won't	blow	past	how	many	
you	are	streaming.	

Velocity	

• Controls	the	motors	to	maintain	a	certain	velocity	using	feedback	from	a	
sensor.	This	is	useful	for	something	like	a	PurePursuit	driving	algorithm,	
where	you	calculate	a	speed	to	maintain	and	then	tell	the	motors	to	
maintain	it	to	follow	the	path.	

Current	

• Current	control	is	very	nice	for	exerting	a	certain	amount	of	force	from	a	
mechanism,	or	performing	linear	movement	without	burning	out	the	
motor	(though	you	should	use	a	current	limit	to	do	this	anyways)	

• Giving	a	negative	value	for	current	makes	the	motor	run	backwards,	
while	positive	will	go	forwards	

Follower	

• Extremely	simple,	the	motor	outputs	exactly	the	same	as	the	motor	
who's	ID	is	passed	into	the	set()	method	when	Follower	is	given.	Note	
that	a	VictorSPX	can	be	slaved	to	a	TalonSRX	when	you	want	the	SRX	only	
features	(Current	Control)	while	still	using	a	cheaper	controller,	however	
the	reverse	is	not	currently	possible.	

	
	 	

	 						 	46	

	
The	Basics	

	
	
Here	is	a	nice	output	for	testing	with	added	weight:	

	
	

	
	
	
	
	
	
	
	
	
	
	
	

	

Phoenix	Tuner	

	 						 	47	

Steps	for	Setting	Up	
	
1. Download	everything	you	need	here	
	
2. Run	the	application,	connect	RoboRIO	to	PC	over	USB	
	
3. Select	172.22.11.2.:1250	in	the	Diagnostic	Server	Address	Bar	
	
4. Click	"Install	Phoenix	Library/Diagnostics"	and	make	sure	firmware	is	

updated	in	CAN	Devices	tab	
	

On	to	tuning:	

1. Confirm	motor	&	sensor	health,	sensor	phase	

2. Get	max	sensor	velocity,	manually	move	motor	to	find	encoder	range	
(hard	limits)	

3. If	encoder	range	values	are	very	unreasonable	out	of	bounds,	make	sure	
necessary	calculations	(such	as	bitwise	operations)	are	done	to	adjust	
encoder	ranges	reasonably.	Make	sure	soft	limits	are	reasonable	or	not	
interfering	with	commands.	

4. Go	to	the	Plotter	on	Phoenix	Tuner	to	see	position,	output,	etc	

	
	 	

	 						 	48	

5.					Configure	gains	
• Set	all	gains	to	zero	(make	sure	the	slot	is	correct	(0	for	now))	
• If	not	using	position-closed-loop,	set	kF	to	your	calculated	value	
• Set	initial	cruise	velocity	and	acceleration.	A	reasonable	initial	

cruise	velocity	is	1/2	the	max	
• units	are	ticks	per	100	ms	
• Initially	cap	the	outputs	very	low	to	minimize	problems	because	

problems	later	suck	
• Deploy	the	application,	use	command	(currently	something	like	

MotionMagicSetpoint)	to	adjust	your	target	ticks	
	

6.	If	using	Motion	Magic	mode,	DO	NOT	PRESS	CONTROL	ENABLED	(for	
Percent	Output,	interferes	with	Motion	Magic).	Using	command	will	
move	motor	and	motor	connected	to	the	Talon	will	respond	
accordingly.	In	newer	versions	of	the	Phoenix	Tuner,	Motion	Magic	
support	has	been	added	into	the	tuner,	so	you	can	enable	that	mode	
from	this	screen	instead	of	through	the	robot	code.	Make	sure	
control	is	enabled,	should	be	on	this	screen:	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	

• If	using	percent	output,	each	tick	on	Control	is	0.05	

	 						 	49	

	
All	closed-loop	modes	update	every	1ms	

7. "Self	Test"	to	get	readouts	of	values	(check	mode	is	Motion	Magic)	

• if	motor	is	not	responding	to	commands,	check	error	values	in	Self	Test	
from	the	encoder	

Implementing	Arbitrary	Feed	Forward	

Arbitrary	Feed	Forward	is	essentially	a	value	that	the	motor	will	take	into	
account	to	counteract	gravity	and	ensure	smooth,	controlled	
movement.	

1. Create	two	commands	for	increasing/decreasing	motor	percent	output	
value.	

2. Have	another	command	for	running	the	motor	at	percent	output	value	
for	short	span	of	time.	Continue	changing	output	value	until	command	
barely	keeps	arm	from	falling.	

3. Update	constant	in	appropriate	subsystem	class	with	final	percent	
output	value,	test	several	timesto	ensure	constant	works	well	

Things	to	check	

• Make	sure	the	Talon	shows	up	under	CAN	devices!	
• Set	the	current	limit	very	low	when	testing	because	fried	parts	are	no	

bueno.	

	

	

	

	

	

	 						 	50	

	

	
	

	 						 	 51	

Vision	

	 						 	52	

	
Our	robot	utilizes	vision	through	OpenCV	on	our	
Raspberry	Pi	in	combination	with	the	Pure	Pursuit	path-
tracking	algorithm	in	order	to	drive	toward	and	align	with	
vision	targets.	
	

What	is	it?	
Pure	pursuit	is	a	path	tracking	algorithm.	Basically,	with	pure	pursuit,	you	
generate	target	velocities	based	on	where	the	robot	is,	relative	to	the	path	it	
wants	to	follow.	One	way	to	think	about	it:	the	robot	is	"chasing"	a	moving	
point	ahead	of	it,	"looking	ahead"	some	distance	to	pursue	the	point.	The	
benefit	of	this	method	is	that	paths	can	adjust;	since	it	moves	based	on	
location	in	relation	to	a	target	path,	the	robot	can	correct	itself	if	it	is	
disturbed	while	moving.	

This	is	what	the	algorithm	is	doing	(image	from	P.	Sanjeevikumar):	

	
	 	

Vision	

Pure	Pursuit	

	 						 	53	

Details	About	Implementation	

• lookaheadDistance	is	how	far	along	the	path	we	should	"pursue"	
• maxVel	and	maxAccel	are	in	inches/s	and	inches/s^2	respectively.	
• maxVelk	is	proportional	to	how	fast	we	turn	
• Feedback	is	supported,	where	kP	should	be	around	0.001.	With	a	

higher	kP,	we	can	better	compensate	for	being	off	the	targeted	
velocity,	but	be	aware	that	too	large	of	a	kP	will	cause	oscillations	

• To	smooth	out	the	paths,	a	=	1-b	and	both	a	and	b	should	be	between	
0	and	1.	Ideally	b	should	fall	in	the	0.7-0.9	range.	The	higher	the	b	
value,	the	smoother	the	path.	

• Spacing	is	the	distance	between	points	along	the	path:	the	path	
generator	will	inject	points	along	the	coordinates	you	specify,	at	the	
given	spacing.	

• Tolerance	is	the	maximum	change	for	each	"smoothing"	operation.	If	
tolerance	is	exceeded,	the	smoothing	algorithm	runs	again,	
continuing	until	the	change	in	the	path	is	below	the	tolerance.	If	
tolerance	is	too	low,	the	smoothing	might	never	converge,	so	try	
raising	the	tolerance	if	this	occurs.	

	

The	Vision	Cameras	consist	of	2	Microsoft	HD	Lifecam	3000s	-	one	on	the	
front	and	one	on	the	back.	Each	one	is	fitting	in	a	mount	with	a	green	LED	
ring	surrounding	it	

The	vision	targets	this	year	are	retroreflective	tape,	meaning	that	they	
reflect	a	bright	green	when	the	LED	ring	shines	on	it,	allowing	the	camera	
to	easily	detect	it	with	calibrated	settings.	

	

Vision	Camera	Setup	

	 						 	54	

This	page	briefly	explains	some	of	the	calculations	used	by	the	vision	system	
to	adjust	certain	inputs	to	a	more	desirable	format.	
	
Φ	calculation	
Φ	is	defined	to	be	the	angle	between	the	front	edge	of	the	robot	and	the	
face	of	the	target.	If	they	are	parallel,	Φ	=	0°,	but	if	the	target	is	to	the	left	of	
the	robot,	Φ	<	0	and	if	the	target	is	to	the	right,	Φ	>	0.		
Φ	is	calculated	by	reading	in	the	field-centric	angle	of	the	robot	from	the	
NavX	(which	is	reset	at	the	start	of	every	match)	and	subtracting	it	from	the	
known	angles	of	the	various	targets	on	the	field.	If	the	angle	of	the	robot	is	
within	a	threshold	of	the	actual	angle	of	the	target,	the	code	assumes	the	
robot	is	trying	to	go	towards	that	target	and	uses	that	angle.	
	
For	instance,	if	the	threshold	is	10°,	the	target	is	at	60°	relative	to	the	field,	
and	the	robot	is	anywhere	from	50°	to	70°	relative	to	the	field,	it	is	assumed	
that	the	robot	is	aiming	for	that	60°	target,	and	that	value	is	used	as	the	
"actual"	angle.	Φ	is	determined	by	subtracting	the	actual	angle	from	angle	
of	the	robot,	giving	us	a	"should	turn"	value	which	specifies	how	much	the	
robot	should	turn	to	face	the	target	straight	on.	
In	the	example	above,	if	the	robot	were	facing	55°	relative	to	the	field,	the	
difference	is	within	the	threshold,	and	Φ	is	calculated	to	be	+5°,	meaning	
the	robot	needs	to	turn	5°	to	the	right	to	face	the	target.	If	the	robot	were	
facing	67°,	Φ	would	be	calculated	as	-7°.	
	
	
	
	
	
	
	
	
	
	
	

Vision	Calculations	

	 						 	55	

Horizontal	Offset	

	
This	calculates	the	angle	to	a	target	that	is	not	parallel	to	the	front	of	the	
robot.	Since	the	vision	system	returns	a	distance	D	and	angle	θ	assuming	the	
target	is	parallel	to	the	front	of	the	robot,	some	adjustments	need	to	be	
made	when	the	robot	is	not	parallel	to	the	target.	Returns	the	adjusted	
angle	θ-hat	
	
A	walkthrough	of	the	calculation	with	example	values:	
Calculation	starts	on	the	left	side	and	follows	the	green	arrows	to	the	
subsequent	step	
	
Given:	D	=	30	inches,	θ	=	10°,	Φ	=	15°		
α	=	65°		
y	=	1.51064	inches		
Given:	x	=	15	inches		
c	=	32.8746	inches		
β	=	26.7019°		
θ-hat	=	48.2981°		
	
Depth	Offset	
This	calculates	the	actual	distance	(depth)	to	the	target.	Since	the	vision	
system	assumes	the	target	is	parallel	to	the	front	of	the	robot,	adjustments	

	 						 	56	

have	to	be	made	when	it	is	known	that	the	robot	is	not	parallel	to	the	
target.	Returns	the	adjusted	depth	real_depth	
	
D	is	obtained	in	the	same	way	as	for	the	Horizontal	Angle	calculation,	Φ	is	
obtained	using	the	method	described	above,	and	x	is	a	known	constant	of	
the	robot.	
	

	
	
A	walkthrough	of	the	calculation	with	example	values:	
	
Given:	D	=	30	inches,	Φ	=	15°,	x	=	15	inches	
real_depth	=	30	+	(15	*	tan(15°))	=	34.0192	inches	
	

