
Background - Game & Our Robot

The 2020 FRC game, Infinite
Recharge, involves two
alliances of three teams each,
with each team controlling
one robot. The robots perform
tasks like shooting Power Cells
(balls) into different goals and
climbing at the end of a
match, to earn points for the
alliance. Also, the robot must
follow height and weight
limits, and cannot control
more than 5 balls at a time.

Our goal was to build a
competitive robot, capable of
winning the FIRST
Championship. To maximize
our rank from qualification
matches, we needed to have a
fast cycle time when acquiring
and scoring power cells.

For that reason, we chose to
acquire and store up to the
maximum of 5 balls at a time
using our intake and indexer
(vertical revolver), then align &
shoot quickly using our
uptake, turret, and shooter.

Subsystem Highlights
A number of interrelated subsystems on the robot are constantly
communicating and are dependent on each other to complete tasks
successfully. For example, the intake, conveyor and indexer work together to
acquire a ball and store it in one of the chambers of the indexer. In order to
function, each of our robot’s subsystems has various motors, motor controllers
and additional sensors, which need to be handled.

Subsystem Motors, Motor
Controllers

Sensors

Drivebase 4 Motors, 4 Motor
Controllers

NavX(9 axis
navigation sensor),
Integrated encoder

Intake 2 Motors, 2 Motor
Controllers

Current Sensor

Indexer + Updraw 3 Motors, 2 Motor
Controllers

Time of Flight Sensor,
Through Bore
encoder, Current
Sensor
Integrated encoder

Turret 1 Motor, 1 Motor
Controller

Hall effect sensors,
Integrated encoder

Shooter 2 Motors, 2 Motor
Controllers

Integrated encoder

Climber 1 Motor, 1 Motor
Controller

Integrated encoder,
Current Sensor

These are the steps that need to work together in order to get a ball from the
ground to the shooter. Before we run the sequences of actions to move balls,
checking to see if the systems are functioning as they should would help
prevent the situation where an issue jams up the whole pathway and breaks
more things as it tries to continue executing a task. As our systems got more
complex, it would be really helpful to have something which could
automatically manage checking the state/health of subsystems and
handling whether an action should be done or not. This way, if a sensor was
disconnected or a motor controller malfunctioned, the robot code as a whole
wouldn’t completely crash, and the system would prevent actions associated
with that missing element from being scheduled to happen.

The Problem:
Dealing with complex systems and sequences

Intake
Gets balls off the ground

and into the robot
Conveyor

Moves intaked balls
towards the indexer

Indexer
Stores up to 5 balls, all

held individually

Updraw
Sends balls out of indexer

and up to shooter

Shooter
High RPM flywheels

shoot balls

Pistons
Push ball into back of

indexer off the conveyor

2020 Robot
Main Sequence

Robot actions, their necessary preconditions, and tracking subsystem states can
be handled by doing a lot of if-else logic, but that can get really unwieldy. It is
also complicated, difficult to maintain, and can lead to a lot of code repetition
and confusion. The way we solved this problem was by creating MustangSystem,
a framework which builds on the WPILibJ library (the standard control system
library used by most FRC teams) and command based programming framework,
with which commands, manipulating subsystems that meet their health
requirements, represent robot actions that are run with the Scheduler.

Our Solution: MustangSystem

A MustangSubsystem can be in 1 of 4 possible Health states: GREEN, YELLOW,
RED, or UNKNOWN (as in, we'll need to recalculate it). When we code each
subsystem of the robot, we define what these states mean with regard to the
specific system. For example, if 1 motor is disconnected on the drivebase, the
drivebase could still function (although not optimally) and thus would be in
“YELLOW” state, while if 1 motor was disconnected on the shooter, that would
mean that the shooter could not function normally. Thus the shooter would be
defined to be in “RED” state.

Our Solution: MustangSubsystemBase

We have the method checkHealth() which needs to be defined for every subsystem,
and is responsible for specifying what the GREEN, YELLOW, and RED states mean
for each part of the robot. Here’s an example below from our Indexer subsystem,
which has 2 motor controllers: a SparkMax and a TalonSRX, and a Time of Flight
sensor, to measure the distance between the ball and the wall of the indexer. If all 3
of these parts are working and ready to go, the state of the indexer is GREEN (it’s
‘healthy’) while if there’s a problem with only the sensor, the indexer and updraw
can still function, thus the state of the system is YELLOW. However if the motor that
rotates the indexer, or the motors that run the updraw, have issues, then the
indexer system is not usable, and it’s in the RED state.

Our Solution: MustangSubsystemBase

Initially, we don’t know the state of subsystems, so right away we’ll determine the
subsystems’ current states. Periodically, we will continue to update and
recalculate the states so the system can run commands based on the state of the
robot. Driver and operator will also be notified if there are any issues, so they will
avoid using a subsystem if it is broken.

Our Solution: MustangSubsystemBase

If someone tried to use the subsystem
after its failure, the request would be
denied and the command will not
run.

All of the subsystems in our robot are
represented by subtypes of this
object. When we code robot actions
with Commands, we call on these
MustangSubsystemBase objects.

Now that we have a way of representing the parts of the robot, we can represent
actions that those parts can do, in code. WPILib has the command based
structure, where Commands representing robot actions are set to run by the
Scheduler. For our system, an action can only run if the subsystems it uses are
all in a usable state, with the requirements defined by the action. So, each
MustangCommand keeps a list of the subsystems it needs and the minimum
health state that each subsystem must be in in order to properly execute the
action.

Our Solution: MustangCommand

For example, below we have a MustangCommand for rotating the indexer by
1 chamber. The only subsystem we need for doing this is the indexer, and
we’ve previously defined the state of the indexer as GREEN if everything is
working, and YELLOW if only the Time of Flight sensor (used when
intaking) is not working. Since we can rotate the indexer without that
sensor, the minimum health state of the indexer needed for this command
to run without issues is YELLOW, and we add that to the map.

We can also represent more complex sequences of actions that use many subsystems
together, by extending the CommandGroup classes from WPILib and still
implementing MustangCommand. For example, here’s the code for the sequence to
intake a ball and move it into the bottom chamber of the indexer. To do this, we need
the intake, conveyor belt, and indexer to all be in working order, with their health
state being GREEN. So we add this condition to the map in the CommandGroup. Then
we can go ahead and add the actions (MustangCommands) that make up this sequence
in the constructor.

CommandGroups like this are how we represent our sequences in code for connecting
and transitioning between the steps on the path the ball takes, from getting a ball
from off the ground to shooting it out. We also use them in our autonomous routines.

Our Solution: MustangCommand

Our Solution: MustangScheduler

Now that we have our commands which have specific subsystems and their target
states as requirements in order to run, we need something to run the commands. We
use the MustangScheduler to schedule/run our commands which is slightly different
from WPiLib’s CommandScheduler. In addition to the CommandScheduler’s functions,
MustangScheduler rechecks the current health state for all the subsystems that are
required to run a specific function. If any of the subsystems are not at the
desired/target state, the command is not allowed to run and the user is notified

Finally, commands can be scheduled easily this way. This specific one is trying to schedule
the ExtendClimer command with the climber subsystem as its requirement. Ultimately, this
command extends the climber if the subsystem is healthy or at its target state.

Conclusion

As our robots’ systems became more complex, it was clear that something
to keep track of the health of robot subsystems and determine whether
actions could be run would be immensely helpful. Such a development
would prevent issues that could happen if one part of the robot fails and
affects other interconnected systems and the procedures that use them. To
deal with this challenge, we created MustangSystem, a framework built on
the preexisting WPILib Java library which checks the state of a subsystem
before executing commands that rely on it, providing a safe way to manage
and carry out robot actions.

Summary

Benefits
MustangSystem helps us model the state of our robot by tracking the health of
its parts. It intelligently stops commands that cannot be safely run at the time,
and allows for alternative actions to happen if defined. This system avoids the
messiness of sprinkling if-else statements everywhere, and provides a solution
which makes writing organized and readable code easier. With
MustangSystem, we get a good separation of concerns between subsystems,
commands and scheduler. It allows us to have greater control over robot
subsystems and actions without completely replacing the base of WPILibJ, and
the foundation it provides means that we will not need to worry about forgetting
to implement checks everywhere.

Going Forward

With MustangSystem being a new innovation this year, there is still a lot of
room for further development and improvement. For example, we wrote a
SparkMaxRotatingSubsystem subclass which represented a mechanism
with a rotator motor and SparkMax controller. In the future, more such
subclasses based on MustangSubsystem could be written to represent other
common types of robot mechanisms, to reduce repeating code and improve
organization.

